IGBT(Insulated Gate Bipolar Transistor)也稱為:絕緣柵雙極晶體管,IGBT是能源變換與傳輸的核心器件,俗稱電力電子裝置的“CPU”,作為國家戰略性新興產業,在軌道交通、智能電網、航空航天、電動汽車與新能源裝備等領域應用極廣。是由(Bipolar Junction Transistor,BJT)雙極型三極管和絕緣柵型場效應管(Metal Oxide Semiconductor,MOS)組成的復合全控型電壓驅動式功率半導體器件,IGBT綜合了這兩種器件的優點,驅動功率小而飽和壓降低。非常適合應用于直流電壓為600V及以上的變流系統如交流電機、變頻器、開關電源、照明電路、牽引傳動等領域。
方法
IGBT是將強電流、高壓應用和快速終端設備用垂直功率MOSFET的自然進化。由于實現一個較高的擊穿電壓BVDSS需要一個源漏通道,而這個通道卻具有很高的電阻率,因而造成功率MOSFET具有RDS(on)數值高的特征,
IGBT消除了現有功率MOSFET的這些主要缺點。雖然[敏感詞]一代功率MOSFET 器件大幅度改進了RDS(on)特性,但是在高電平時,功率導通損耗仍然要比
IGBT 技術高出很多。較低的壓降,轉換成一個低VCE(sat)的能力,以及
IGBT的結構,同一個標準雙極器件相比,可支持更高電流密度,并簡化
IGBT驅動器的原理圖。
導通
IGBT硅片的結構與功率MOSFET 的結構十分相似,主要差異是
IGBT增加了P+ 基片和一個N+ 緩沖層(NPT-非穿通-
IGBT技術沒有增加這個部分)。其中一個MOSFET驅動兩個雙極器件?;膽迷诠荏w的P+和 N+ 區之間創建了一個J1結。 當正柵偏壓使柵極下面反演P基區時,一個N溝道形成,同時出現一個電子流,并完全按照功率 MOSFET的方式產生一股電流。如果這個電子流產生的電壓在0.7V范圍內,那么,J1將處于正向偏壓,一些空穴注入N-區內,并調整陰陽極之間的電阻率,這種方式降低了功率導通的總損耗,并啟動了第二個電荷流。最后的結果是,在半導體層次內臨時出現兩種不同的電流拓撲:一個電子流(MOSFET 電流); 一個空穴電流(雙極)。
關斷
當在柵極施加一個負偏壓或柵壓低于門限值時,溝道被禁止,沒有空穴注入N-區內。在任何情況下,如果MOSFET電流在開關階段迅速下降,集電極電流則逐漸降低,這是因為換向開始后,在N層內還存在少數的載流子(少子)。這種殘余電流值(尾流)的降低,完全取決于關斷時電荷的密度,而密度又與幾種因素有關,如摻雜質的數量和拓撲,層次厚度和溫度。少子的衰減使集電極電流具有特征尾流波形,集電極電流引起以下問題:功耗升高;交叉導通問題,特別是在使用續流二極管的設備上,問題更加明顯。
鑒于尾流與少子的重組有關,尾流的電流值應與芯片的溫度、IC 和VCE密切相關的空穴移動性有密切的關系。因此,根據所達到的溫度,降低這種作用在終端設備設計上的電流的不理想效應是可行的。
阻斷與閂鎖
當集電極被施加一個反向電壓時, J1 就會受到反向偏壓控制,耗盡層則會向N-區擴展。因過多地降低這個層面的厚度,將無法取得一個有效的阻斷能力,所以,這個機制十分重要。另一方面,如果過大地增加這個區域尺寸,就會連續地提高壓降。 第二點清楚地說明了NPT器件的壓降比等效(IC 和速度相同) PT 器件的壓降高的原因。
當柵極和發射極短接并在集電[敏感詞]子施加一個正電壓時,P/N J3結受反向電壓控制,此時,仍然是由N漂移區中的耗盡層承受外部施加的電壓。
IGBT在集電極與發射極之間有一個寄生PNPN晶閘管。在特殊條件下,這種寄生器件會導通。這種現象會使集電極與發射極之間的電流量增加,對等效MOSFET的控制能力降低,通常還會引起器件擊穿問題。晶閘管導通現象被稱為
IGBT閂鎖,具體地說,這種缺陷的原因互不相同,與器件的狀態有密切關系。通常情況下,靜態和動態閂鎖有如下主要區別:
當晶閘管全部導通時,靜態閂鎖出現,只在關斷時才會出現動態閂鎖。這一特殊現象嚴重地限制了安全操作區。為防止寄生NPN和PNP晶體管的有害現象,有必要采取以下措施:防止NPN部分接通,分別改變布局和摻雜級別,降低NPN和PNP晶體管的總電流增益。此外,閂鎖電流對PNP和NPN器件的電流增益有一定的影響,因此,它與結溫的關系也非常密切;在結溫和增益提高的情況下,P基區的電阻率會升高,破壞了整體特性。因此,器件制造商必須注意將集電極[敏感詞]電流值與閂鎖電流之間保持一定的比例,通常比例為1:5。
靜態特性
IGBT 的靜態特性主要有伏安特性、轉移特性。
IGBT 的伏安特性是指以柵源電壓Ugs 為參變量時,漏極電流與柵極電壓之間的關系曲線。輸出漏極電流比受柵源電壓Ugs 的控制,Ugs 越高, Id 越大。它與GTR 的輸出特性相似.也可分為飽和區1 、放大區2 和擊穿特性3 部分。在截止狀態下的IGBT ,正向電壓由J2 結承擔,反向電壓由J1結承擔。如果無N+緩沖區,則正反向阻斷電壓可以做到同樣水平,加入N+緩沖區后,反向關斷電壓只能達到幾十伏水平,因此限制了IGBT 的某些應用范圍。
IGBT 的轉移特性是指輸出漏極電流Id 與柵源電壓Ugs 之間的關系曲線。它與MOSFET 的轉移特性相同,當柵源電壓小于開啟電壓Ugs(th) 時,
IGBT 處于關斷狀態。在
IGBT 導通后的大部分漏極電流范圍內, Id 與Ugs呈線性關系。[敏感詞]柵源電壓受[敏感詞]漏極電流限制,其[敏感詞]值一般取為15V左右。
動態特性
動態特性又稱開關特性,
IGBT的開關特性分為兩大部分:一是開關速度,主要指標是開關過程中各部分時間;另一個是開關過程中的損耗。
IGBT 的開關特性是指漏極電流與漏源電壓之間的關系。
IGBT 處于導通態時,由于它的PNP 晶體管為寬基區晶體管,所以其B 值極低。盡管等效電路為達林頓結構,但流過MOSFET 的電流成為
IGBT 總電流的主要部分。此時,通態電壓Uds(on) 可用下式表示::
Uds(on) = Uj1 + Udr + IdRoh
式中Uj1 —— JI 結的正向電壓,其值為0.7 ~1V ;Udr ——擴展電阻Rdr 上的壓降;Roh ——溝道電阻。
通態電流Ids 可用下式表示:
Ids=(1+Bpnp)Imos
式中Imos ——流過MOSFET 的電流。
由于N+ 區存在電導調制效應,所以
IGBT 的通態壓降小,耐壓1000V的
IGBT 通態壓降為2 ~ 3V 。
IGBT 處于斷態時,只有很小的泄漏電流存在。
IGBT 在開通過程中,大部分時間是作為MOSFET 來運行的,只是在漏源電壓Uds 下降過程后期, PNP 晶體管由放大區至飽和,又增加了一段延遲時間。td(on) 為開通延遲時間,tri 為電流上升時間。實際應用中常給出的漏極電流開通時間ton 即為td (on) tri 之和,漏源電壓的下降時間由tfe1 和tfe2 組成。
IGBT的觸發和關斷要求給其柵極和基極之間加上正向電壓和負向電壓,柵極電壓可由不同的驅動電路產生。當選擇這些驅動電路時,必須基于以下的參數來進行:器件關斷偏置的要求、柵極電荷的要求、耐固性要求和電源的情況。因為
IGBT柵極- 發射極阻抗大,故可使用MOSFET驅動技術進行觸發,不過由于
IGBT的輸入電容較MOSFET為大,故
IGBT的關斷偏壓應該比許多MOSFET驅動電路提供的偏壓更高。
IGBT在關斷過程中,漏極電流的波形變為兩段。因為MOSFET關斷后,PNP晶體管的存儲電荷難以迅速消除,造成漏極電流較長的尾部時間,td(off)為關斷延遲時間,trv為電壓Uds(f)的上升時間。實際應用中常常給出的漏極電流的下降時間Tf由圖中的t(f1)和t(f2)兩段組成,而漏極電流的關斷時間
t(off)=td(off)+trv十t(f)
式中:td(off)與trv之和又稱為存儲時間。
IGBT的開關速度低于MOSFET,但明顯高于GTR。
IGBT在關斷時不需要負柵壓來減少關斷時間,但關斷時間隨柵極和發射極并聯電阻的增加而增加。
IGBT的開啟電壓約3~4V,和MOSFET相當。
IGBT導通時的飽和壓降比MOSFET低而和GTR接近,飽和壓降隨柵極電壓的增加而降低。
正式商用的
IGBT器件的電壓和電流容量還很有限,遠遠不能滿足電力電子應用技術發展的需求;高壓領域的許多應用中,要求器件的電壓等級達到10KV以上,目前只能通過
IGBT高壓串聯等技術來實現高壓應用。國外的一些廠家如瑞士ABB公司采用軟穿通原則研制出了8KV的
IGBT器件,德國的EUPEC生產的6500V/600A高壓大功率
IGBT器件已經獲得實際應用,日本東芝也已涉足該領域。與此同時,各大半導體生產廠商不斷開發
IGBT的高耐壓、大電流、高速、低飽和壓降、高可靠性、低成本技術,主要采用1um以下制作工藝,研制開發取得一些新進展。2013年9月12日 我國自主研發的高壓大功率3300V/50A
IGBT(絕緣柵雙極型晶體管)芯片及由此芯片封裝的大功率1200A/3300V
IGBT模塊通過專家鑒定,中國自此有了完全自主的
IGBT“中國芯”。
除了IGBT外,功率半導體元器件(晶體管領域)的代表產品還有MOSFET、BIPOLAR等,它們主要被用作半導體開關。
根據其分別可支持的開關速度,BIPOLAR適用于中速開關,MOSFET則適用于高頻領域。
IGBT是輸入部為MOSFET結構、輸出部為BIPOLAR結構的元器件,通過這兩者的復合化,既是使用電子與空穴兩種載體的雙極元件,同時也是兼顧低飽和電壓(與功率MOSFET的低導通電阻相當)和較快的開關特性的晶體管。
盡管其具有較快的開關特性,但仍比不上功率MOSFET,這是IGBT的弱點。
【功率元器件的基本結構與特點】
至產品詳細網頁